Codeforces 1060 F. Shrinking Tree
一道思维好题啊...感觉这种类型的题很检验基本功是否扎实(像我这样的就挂了)。
题意:你有一棵
碰到浮点数输出的题就很怕卡精,不过这道题似乎不卡,担心卡精可以开
好了现在开始讲做法吧。我们的大体思想是每一个点分别求解答案。对于每一个点,用某种方法算出它最终被留下的方案数,那么再除以
现在来关心怎么求出每一个点被留下的方案数,我们将要求答案的点
我们先来解决一个小问题:
假设我们将当前节点
显然左右两部分的子树对对方是没有影响的,因此我们可以将左右的方案合并。只要剩下的左边的
同时我们还要注意已经删除的边,在真实的操作序列中它们也同样需要合在一起。因此和上面相似,我们假设左边原来一共有
综上所述,它们的贡献应该是
那么沿着刚刚的想法继续思考,我们或许可以采取如下策略
现在我们只要解决如何计算只考虑
于是我们终于完成了最后一块拼图,得到了可行的解法。最后总结一下做法,我们分别计算每一个答案,接着进行树形
我的代码:
#include<cstdio>
#include<vector>
using std::vector;
typedef long double ldb;
const int N=55;
int n;
vector<int> G[N];
int size[N];
ldb fact[N];
ldb dp[N][N],tmp[N],g[N];
inline ldb choose(int n,int m)
{
return fact[n]/(fact[m]*fact[n-m]);
}
void dfs(int now,int father)
{
register int i,j;
dp[now][0]=1;size[now]=1;
for(auto x:G[now])
{
if(x==father)
continue;
dfs(x,now);
for(i=0;i<=size[x];i++)
{
g[i]=0;
for(j=1;j<=size[x];j++)
if(j<=i)
g[i]+=0.5*dp[x][j-1];
else
g[i]+=dp[x][i];
}
for(i=0;i<size[now]+size[x];i++)
tmp[i]=0;
for(i=0;i<size[now];i++)
for(j=0;j<=size[x];j++)
tmp[i+j]+=dp[now][i]*g[j]*choose(i+j,i)*choose(size[now]-1-i+size[x]-j,size[now]-1-i);
for(i=0;i<size[now]+size[x];i++)
dp[now][i]=tmp[i];
size[now]+=size[x];
}
return;
}
signed main()
{
int x,y;
register int i;
scanf("%d",&n);
fact[0]=1;
for(i=1;i<=n-1;i++)
fact[i]=fact[i-1]*i;
for(i=1;i<=n-1;i++)
{
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
for(i=1;i<=n;i++)
{
dfs(i,0);
printf("%.9lf\n",(double)(dp[i][n-1]/fact[n-1]));
}
return 0;
}