a⋅b⇝ab
g∈G^⇝g∈G
⊢w.d.(E:G↦e)
◂(∃e,e′∈G)(∀g∈G)(eg=ge=g∧e′g=ge′=g)⇒e=ee′=e′▸
E(G)⇝e
⊢w.d.(INV:g↦g′)
◂(∃g1,g2∈G)(g1g=gg1=e∧g2g=gg2=e)⇒g1=g1(gg2)=(g1g)g2=g2▸
INV(g)⇝g−1
⊢(g−1)−1=g
⊢(ab)−1=b−1a−1
⊢w.d.(ak|k∈Z)
⊢G∈SG∧(∃e∈G)(∀g∈G)(eg=g)∧(∀g∈G)(∃g′∈G)(g′g=e)→G∈G
◂gg′=egg′=(g″g′)gg′=g″(g′g)g′=g″eg′=g″g=e,ge=g(g′g)=(gg′)g=eg=g▸
G∈G∧H∈G∧H^⊆G^⇝H≤G
⊢G∈G∧H^⊆G^∧(∀a,b∈H^)(ab∈H^∧a−1∈H^)→H∈G
⊢G∈G∧H^⊆G^∧(∀a,b∈H^)(ab−1∈H^)→H∈G
⊢G∈G∧H^⊆G^∧|H^|<∞∧(∀a,b∈H^)(ab∈H^)→H∈G
C:G↦{c∈G|(∀g∈G)(cg=gc)}
⊢C(G)≤G
..
⊢∅⊊H⊆{H|H≤G}→⋂H≤G
⊢w.d.(⟨S⟩:=H|H≤G∧S⊆H^∧(∀H′≤G)(S⊆H′^→H≤H′))
⊢⟨S⟩^={∏i=1naiεi|n∈N∗∧ai∈S∧εi∈{±1}}
⟨{a}⟩⇝⟨a⟩
o(a):=inf{n∈N∗|an=e}
{ah|h∈H}⇝aH
⊢H≤G∧g∈G→(g∈H↔gH=H)
⊢|aH|=|H|
⊢aH≠bH→aH∩bH=∅
◂aH≠bH∧ah1=bh2∈aH∩bH⇒b−1aH≠H∧b−1a=h2h1−1∈H⇒b−1a∉H∧b−1a∈H⇒!▸
G/LH:={aH|a∈G}
[G:H]:=|G/LH|