Uncombinatorial Abstract Algebra

semigroup

SG:={G=G^,|G^G^×G^(a,b,cG^)((ab)c)=(a(bc))}

abab

gG^gG

monoid

MN:={GSG|(eG)(gG)(eg=ge=g)}

w.d.(E:Ge)

(e,eG)(gG)(eg=ge=geg=ge=g)e=ee=e

E(G)e

group

G:={GMN|(gG)(gG)(gg=gg=e)}

w.d.(INV:gg)

(g1,g2G)(g1g=gg1=eg2g=gg2=e)g1=g1(gg2)=(g1g)g2=g2

INV(g)g1

(g1)1=g

(ab)1=b1a1

w.d.(ak|kZ)

GSG(eG)(gG)(eg=g)(gG)(gG)(gg=e)GG

gg=egg=(gg)gg=g(gg)g=geg=gg=e,ge=g(gg)=(gg)g=eg=g

subgroup

GGHGH^G^HG

GGH^G^(a,bH^)(abH^a1H^)HG

GGH^G^(a,bH^)(ab1H^)HG

GGH^G^|H^|<(a,bH^)(abH^)HG

center

C:G{cG|(gG)(cg=gc)}

C(G)G

..

H{H|HG}HG

w.d.(S:=H|HGSH^(HG)(SH^HH))

S^={i=1naiεi|nNaiSεi{±1}}

{a}a

period

o(a):=inf{nN|an=e}

..

coset

{ah|hH}aH

HGgG(gHgH=H)

|aH|=|H|

aHbHaHbH=

aHbHah1=bh2aHbHb1aHHb1a=h2h11Hb1aHb1aH!

G/LH:={aH|aG}

[G:H]:=|G/LH|

Lagrange theorem

HG|G|=|H|[G:H]